760 research outputs found

    Static Data Structure Lower Bounds Imply Rigidity

    Full text link
    We show that static data structure lower bounds in the group (linear) model imply semi-explicit lower bounds on matrix rigidity. In particular, we prove that an explicit lower bound of tω(log2n)t \geq \omega(\log^2 n) on the cell-probe complexity of linear data structures in the group model, even against arbitrarily small linear space (s=(1+ε)n)(s= (1+\varepsilon)n), would already imply a semi-explicit (PNP\bf P^{NP}\rm) construction of rigid matrices with significantly better parameters than the current state of art (Alon, Panigrahy and Yekhanin, 2009). Our results further assert that polynomial (tnδt\geq n^{\delta}) data structure lower bounds against near-optimal space, would imply super-linear circuit lower bounds for log-depth linear circuits (a four-decade open question). In the succinct space regime (s=n+o(n))(s=n+o(n)), we show that any improvement on current cell-probe lower bounds in the linear model would also imply new rigidity bounds. Our results rely on a new connection between the "inner" and "outer" dimensions of a matrix (Paturi and Pudlak, 2006), and on a new reduction from worst-case to average-case rigidity, which is of independent interest

    A Multiple Point Recorder for Small Animal Locomotor Activity

    Get PDF
    This recorder is intended to simplify the assessment of data gathered from photoelectric actometers registering total locomotor movements. The information is presented automatically in two forms: (1) a curve of total activity over a 24 hour period, (2) a bar graph of the activity in each 30 minute time interval. A further trace is used to enable the time of onset of bursts of activity to be judged with reasonable accuracy. A particular advantage lies in the fact that the recording pens are stationary, making it possible to plot the outputs from several activity counters across the whole width of the recording paper. Standard electrical components which are easily available are used throughout the equipment

    Investigation of a Bubble Detector based on Active Electrolocation of Weakly Electric Fish

    Get PDF
    Weakly electric fish employ active electrolocation for navigation and object detection. They emit an electric signal with their electric organ in the tail and sense the electric field with electroreceptors that are distributed over their skin. We adopted this principle to design a bubble detector that can detect gas bubbles in a fluid or, in principle, objects with different electric conductivity than the surrounding fluid. The evaluation of the influence of electrode diameter on detecting a given bubble size showed that the signal increases with electrode diameter. Therefore it appears that this detector will be more appropriate for large sized applications such as bubble columns than small sized applications such as bubble detectors in dialysis

    Quantitative Models and Implicit Complexity

    Full text link
    We give new proofs of soundness (all representable functions on base types lies in certain complexity classes) for Elementary Affine Logic, LFPL (a language for polytime computation close to realistic functional programming introduced by one of us), Light Affine Logic and Soft Affine Logic. The proofs are based on a common semantical framework which is merely instantiated in four different ways. The framework consists of an innovative modification of realizability which allows us to use resource-bounded computations as realisers as opposed to including all Turing computable functions as is usually the case in realizability constructions. For example, all realisers in the model for LFPL are polynomially bounded computations whence soundness holds by construction of the model. The work then lies in being able to interpret all the required constructs in the model. While being the first entirely semantical proof of polytime soundness for light logi cs, our proof also provides a notable simplification of the original already semantical proof of polytime soundness for LFPL. A new result made possible by the semantic framework is the addition of polymorphism and a modality to LFPL thus allowing for an internal definition of inductive datatypes.Comment: 29 page

    Observing CMB polarisation through ice

    Get PDF
    Ice crystal clouds in the upper troposphere can generate polarisation signals at the uK level. This signal can seriously affect very sensitive ground based searches for E- and B-mode of Cosmic Microwave Background polarisation. In this paper we estimate this effect within the ClOVER experiment observing bands (97, 150 and 220 GHz) for the selected observing site (Llano de Chajnantor, Atacama desert, Chile). The results show that the polarisation signal from the clouds can be of the order of or even bigger than the CMB expected polarisation. Climatological data suggest that this signal is fairly constant over the whole year in Antarctica. On the other hand the stronger seasonal variability in Atacama allows for a 50% of clean observations during the dry season.Comment: 7 Pages, 4 figure

    Searching of gapped repeats and subrepetitions in a word

    Full text link
    A gapped repeat is a factor of the form uvuuvu where uu and vv are nonempty words. The period of the gapped repeat is defined as u+v|u|+|v|. The gapped repeat is maximal if it cannot be extended to the left or to the right by at least one letter with preserving its period. The gapped repeat is called α\alpha-gapped if its period is not greater than αv\alpha |v|. A δ\delta-subrepetition is a factor which exponent is less than 2 but is not less than 1+δ1+\delta (the exponent of the factor is the quotient of the length and the minimal period of the factor). The δ\delta-subrepetition is maximal if it cannot be extended to the left or to the right by at least one letter with preserving its minimal period. We reveal a close relation between maximal gapped repeats and maximal subrepetitions. Moreover, we show that in a word of length nn the number of maximal α\alpha-gapped repeats is bounded by O(α2n)O(\alpha^2n) and the number of maximal δ\delta-subrepetitions is bounded by O(n/δ2)O(n/\delta^2). Using the obtained upper bounds, we propose algorithms for finding all maximal α\alpha-gapped repeats and all maximal δ\delta-subrepetitions in a word of length nn. The algorithm for finding all maximal α\alpha-gapped repeats has O(α2n)O(\alpha^2n) time complexity for the case of constant alphabet size and O(nlogn+α2n)O(n\log n + \alpha^2n) time complexity for the general case. For finding all maximal δ\delta-subrepetitions we propose two algorithms. The first algorithm has O(nloglognδ2)O(\frac{n\log\log n}{\delta^2}) time complexity for the case of constant alphabet size and O(nlogn+nloglognδ2)O(n\log n +\frac{n\log\log n}{\delta^2}) time complexity for the general case. The second algorithm has O(nlogn+nδ2log1δ)O(n\log n+\frac{n}{\delta^2}\log \frac{1}{\delta}) expected time complexity

    A taste of the deep-sea: The roles of gustatory and tactile searching behaviour in the grenadier fish <i>Coryphaenoides armatus</i>

    Get PDF
    The deep-sea grenadier fishes (Coryphaenoides spp.) are among the dominant predators and scavengers in the ocean basins that cover much of Earth's surface. Baited camera experiments were used to study the behaviour of these fishes. Despite the apparent advantages of rapidly consuming food, grenadiers attracted to bait spend a large proportion of their time in prolonged periods of non-feeding activity. Video analysis revealed that fish often adopted a head-down swimming attitude (mean of 21.3 degrees between the fish and seafloor), with swimming velocity negatively related to attitude. The fish also swam around and along vertical and horizontal structures of the lander with their head immediately adjacent to the structure. We initially hypothesised that this behaviour was associated with the use of the short chin barbel in foraging. Barbel histology showed numerous taste buds in the skin, and a barbel nerve with about 20,000 axons in adult fish. A tracing experiment in one undamaged animal revealed the termination fields of the barbel neurons in the trigeminal and rhombencephalic regions, indicating both a mechanoreceptory and a gustatory role for the barbel. Our conclusion was that olfactory foraging becomes ineffective at close ranges and is followed by a search phase using tactile and gustatory sensing by the barbel. The development of this sensory method probably co-evolved alongside behavioural changes in swimming mechanics to allow postural stability at low swimming speeds

    Active Electric Imaging: Body-Object Interplay and Object's “Electric Texture”

    Get PDF
    This article deals with the role of fish's body and object's geometry on determining the image spatial shape in pulse Gymnotiforms. This problem was explored by measuring local electric fields along a line on the skin in the presence and absence of objects. We depicted object's electric images at different regions of the electrosensory mosaic, paying particular attention to the perioral region where a fovea has been described. When sensory surface curvature increases relative to the object's curvature, the image details depending on object's shape are blurred and finally disappear. The remaining effect of the object on the stimulus profile depends on the strength of its global polarization. This depends on the length of the object's axis aligned with the field, in turn depending on fish body geometry. Thus, fish's body and self-generated electric field geometries are embodied in this “global effect” of the object. The presence of edges or local changes in impedance at the nearest surface of closely located objects adds peaks to the image profiles (“local effect” or “object's electric texture”). It is concluded that two cues for object recognition may be used by active electroreceptive animals: global effects (informing on object's dimension along the field lines, conductance, and position) and local effects (informing on object's surface). Since the field has fish's centered coordinates, and electrosensory fovea is used for exploration of surfaces, fish fine movements are essential to perform electric perception. We conclude that fish may explore adjacent objects combining active movements and electrogenesis to represent them using electrosensory information

    Underwater robots equipped with artificial electric sense for the exploration of unconventional aquatic niches

    Get PDF
    International audienceThis article presents different use of the electric field perception in the context of underwater robot navigation. To illustrate the developed navigation behaviours we will introduce a recently launched european project named subCULTron and will show some simulation and experimentation results. The project sub- CULTron aims at achieving long-term collective robot exploration and monitoring of underwater environments. The demonstration will take place in the lagoon of Venice, a large shallow embayment composed of salt turbib water that represents a challenging environment for underwater robots as common sensor like vision or acoustic are difficult to handle. To overcome turbidity and confinement problems our robots will be equipped with artificial electric sensors that will be used as the main sensorial modality for navigation. Electric sense is a bio-inspired sense that has been developed by several species of fish living in turbib and confined underwater environment. In this paper, many different robotic behaviours based on the electric field perception will be presented, in particular we will address reactive navigation, object/robots detection, and object localization and estimation
    corecore